1,982 research outputs found

    Where Does the Density Localize? Convergent Behavior for Global Hybrids, Range Separation, and DFT+U

    Get PDF
    Approximate density functional theory (DFT) suffers from many-electron self- interaction error, otherwise known as delocalization error, that may be diagnosed and then corrected through elimination of the deviation from exact piecewise linear behavior between integer electron numbers. Although paths to correction of energetic delocalization error are well- established, the impact of these corrections on the electron density is less well-studied. Here, we compare the effect on density delocalization of DFT+U, global hybrid tuning, and range- separated hybrid tuning on a diverse test set of 32 transition metal complexes and observe the three methods to have qualitatively equivalent effects on the ground state density. Regardless of valence orbital diffuseness (i.e., from 2p to 5p), ligand electronegativity (i.e., from Al to O), basis set (i.e., plane wave versus localized basis set), metal (i.e., Ti, Fe, Ni) and spin state, or tuning method, we consistently observe substantial charge loss at the metal and gain at ligand atoms (ca. 0.3-0.5 e or more). This charge loss at the metal is preferentially from the minority spin, leading to increasing magnetic moment as well. Using accurate wavefunction theory references, we observe that a minimum error in partial charges and magnetic moments occur at higher tuning parameters than typically employed to eliminate energetic delocalization error. These observations motivate the need to develop multi-faceted approximate-DFT error correction approaches that separately treat density delocalization and energetic errors in order to recover both correct density and magnetization properties.Comment: 34 pages, 11 figure

    Non-adiabatic Josephson Dynamics in Junctions with in-Gap Quasiparticles

    Get PDF
    Conventional models of Josephson junction dynamics rely on the absence of low energy quasiparticle states due to a large superconducting gap. With this assumption the quasiparticle degrees of freedom become "frozen out" and the phase difference becomes the only free variable, acting as a fictitious particle in a local in time Josephson potential related to the adiabatic and non-dissipative supercurrent across the junction. In this article we develop a general framework to incorporate the effects of low energy quasiparticles interacting non-adiabatically with the phase degree of freedom. Such quasiparticle states exist generically in constriction type junctions with high transparency channels or resonant states, as well as in junctions of unconventional superconductors. Furthermore, recent experiments have revealed the existence of spurious low energy in-gap states in tunnel junctions of conventional superconductors - a system for which the adiabatic assumption typically is assumed to hold. We show that the resonant interaction with such low energy states rather than the Josephson potential defines nonlinear Josephson dynamics at small amplitudes.Comment: 9 pages, 1 figur

    Josephson effect in graphene SBS junctions

    Full text link
    We study Josephson effect in graphene superconductor- barrier- superconductor junctions with short and wide barriers of thickness dd and width LL, which can be created by applying a gate voltage V0V_0 across the barrier region. We show that Josephson current in such graphene junctions, in complete contrast to their conventional counterparts, is an oscillatory function of both the barrier width dd and the applied gate voltage V0V_0. We also demonstrate that in the thin barrier limit, where V0V_0 \to \infty and d0d \to 0 keeping V0dV_0 d finite, such an oscillatory behavior can be understood in terms of transmission resonance of Dirac-Bogoliubov-de Gennes quasiparticles in superconducting graphene. We discuss experimental relevance of our work.Comment: 7 Pg., 6 Figs, extended version submitted to PR

    Transport Processes in Metal-Insulator Granular Layers

    Full text link
    Tunnel transport processes are considered in a square lattice of metallic nanogranules embedded into insulating host to model tunnel conduction in real metal/insulator granular layers. Based on a simple model with three possible charging states (±\pm, or 0) of a granule and three kinetic processes (creation or recombination of a ±\pm pair, and charge transfer) between neighbor granules, the mean-field kinetic theory is developed. It describes the interplay between charging energy and temperature and between the applied electric field and the Coulomb fields by the non-compensated charge density. The resulting charge and current distributions are found to be essentially different in the free area (FA), between the metallic contacts, or in the contact areas (CA), beneath those contacts. Thus, the steady state dc transport is only compatible with zero charge density and ohmic resistivity in FA, but charge accumulation and non-ohmic behavior are \emph{necessary} for conduction over CA. The approximate analytic solutions are obtained for characteristic regimes (low or high charge density) of such conduction. The comparison is done with the measurement data on tunnel transport in related experimental systems.Comment: 10 pages, 11 figures, 1 reference corrected, acknowlegments adde

    Josephson Junctions defined by a Nano-Plough

    Full text link
    We define superconducting constrictions by ploughing a deposited Aluminum film with a scanning probe microscope. The microscope tip is modified by electron beam deposition to form a nano-plough of diamond-like hardness, what allows the definition of highly transparent Josephson junctions. Additionally a dc-SQUID is fabricated to verify appropriate functioning of the junctions. The devices are easily integrated in mesoscopic devices as local radiation sources and can be used as tunable on-chip millimeter wave sources

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Characterization of a Differential Radio-Frequency Single-Electron Transistor

    Full text link
    We have fabricated and characterized a new type of electrometer that couples two parallel single-electron transistors (SETs) to a radio-frequency tank circuit for use as a differential RF-SET. We demonstrate operation of this device in summing, differential, and single-SET operation modes, and use it to measure a Coulomb staircase from a differential single Cooper-pair box. In differential mode, the device is sensitive to uncorrelated input signals while screening out correlated ones.Comment: 3 pages, 3 figures, submitted to Applied Physics Letter

    Experimental study of the correlation length of critical-current fluctuations in the presence of surface disorder: Probing vortex long-range interactions

    Full text link
    We report on critical currents and voltage noise measurements in Niobium strips in the superconducting state, in the presence of a bulk vortex lattice (B<BC2B < B_{C2}) and in the surface superconducting state (Bc2<B<BC3B_{c2}< B < B_{C3}). For homogeneous surfaces, the correlation length of the current fluctuations can be associated with the electromagnetic skin depth of vortex superficial instabilities. The modification of the surface state by means of low energy irradiation induces a strong modification of the critical current and of the noise. The appearance of a corner frequency in the spectral domain can be linked with the low wave-vectors of the artificial corrugation. Since this latter occurs only for B<BC2B < B_{C2}, we propose that the long-range interactions allow the correlation length to extend up to values imposed by the surface topography.Comment: accepted for publication in PR

    Turbulence in the mixing region between ducted coaxial streams

    Get PDF
    Turbulence in mixing region of ducted coaxial flow of air-air and air-Freon 12 combinatio
    corecore